Практическая часть. Ранговая корреляция
Страница 1

В психологии часто возникает потребность анализа связи между переменными, которые не могут быть измерены в интервальной или реляционных шкалах, но тем не менее поддаются упорядочению и могут быть проранжированы по степени убывания или возрастания признака. Для определения тесноты связи между признаками, измеренными в порядковых шкалах, применяются методы ранговой корреляции. К ним относятся: коэффициенты ранговой корреляции Спирмена и Кендалла (используются для определения тесноты связи между двумя величинами) и коэффициент конкордации (устанавливает статистическую связь между несколькими признаками). Использование коэффициента линейной корреляции Пирсона в случае, когда о законе распределения и о типе измерительной шкалы отсутствует сколько-нибудь надежная информация, может привести к существенным ошибкам.

Методы ранговой корреляции могут быть использованы для определения тесноты связи не только между количественными переменными, но и между качественными признаками при условии, что их значения можно упорядочить и проранжировать. Эти методы также могут быть использованы применительно к признакам, измеренным в интервальных и реляционных шкалах, однако их эффективность в этом случае всегда будет ниже.

Коэффициент ранговой корреляции Спирмена. Каждая из двух совокупностей располагается в виде вариационного ряда с присвоением каждому члену ряда соответствующего порядкового номера (ранга), выраженного натуральным числом. Одинаковым значениям ряда присваивают среднее ранговое число.

Сравниваемые признаки можно ранжировать в любом направлении:

как в сторону ухудшения качества (ранг 1 получает самый большой, быстрый, умный и т.д. испытуемый), так и наоборот. Главное, чтобы обе переменные были проранжированы одинаковым способом.

Коэффициент ранговой корреляции Спирмена находится по формуле n

6 ⋅ ∑ d i2

rS = 1 − i =1, n −n3

где di - разность рангов для каждой i-пары из n наблюдений.

Если в вариационных рядах для X и Y встречаются члены ряда с одинаковыми ранговыми числами, то в формулу для коэффициента корреляции Спирмена необходимо внести поправки Tx и Ty на одинаковые ранги:

n

6 ⋅ ∑ d i2 l

rS = 1 − i =1, T = ∑ (t k − t k).

3

1

(n 3 − n) − (Tx + T y) k =1

2

Здесь l - число групп в вариационном ряду с одинаковыми ранговыми числами; tk - число членов в каждой из l групп.

Ранговый коэффициент корреляции Спирмена, как и линейный, изменяется от -1 до +1, однако значение рангового коэффициента корреляции Спирмена всегда меньше значения коэффициента линейной корреляции Пирсона: rS < r.

Проверка гипотезы о значимости коэффициента ранговой корреляции Спирмена проводится по-разному в зависимости от объема выборки.

1. Объем выборки больше 30 (n > 30).

Проверка нулевой гипотезы h0: с = 0 при альтернативной h1: с ≠ 0 осуществляется с помощью критерия Стьюдента и заключается в вычислении величины rS

t = ⋅ n−2,1 − rS2

имеющей распределение Стьюдента с df = n - 2 степенями свободы. Эмпирическое значение сравнивается с критическими значениями tб (n - 2).

Нулевая гипотеза с = 0 не отвергается, если эмпирическое значение попадает в область допустимых значений:

| t | ≤ t0,05 (df), df = n - 2.

Коэффициент ранговой корреляции Спирмена значимо отличается от нуля, если эмпирическое значение попадает в критическую область:

| t | > t0,01 (df), df = n - 2.

2. Очень малый объем выборки (n ≤ 30).

Проверка нулевой гипотезы осуществляется путем сравнения вычисленного коэффициента rS с критическими значениями rб (n), взятым из статистических таблиц для выбранного уровня значимости б и числа пар наблюдений n (табл.3.1). Нулевая гипотеза с = 0 не отвергается, если эмпирическое значение попадает в область допустимых значений:

| rS | ≤ r0,05 (n).

Коэффициент ранговой корреляции Спирмена значимо отличается от нуля, если вычисленное значение попадает в критическую область:

| rS | > r0,01 (n).

Таблица 3.1

Критические значения коэффициента ранговой корреляции Спирмена

α α α

n n n

0,05 0,01 0,05 0,01 0,05 0,01

7 0,745 0,893 15 0,518 0,654 23 0,415 0,531

8 0,690 0,857 16 0,500 0,632 24 0,406 0,520

9 0,663 0,817 17 0,485 0,615 25 0,398 0,510

10 0,636 0,782 18 0,472 0,598 26 0,389 0,500

11 0,609 0,754 19 0,458 0,582 27 0,383 0,491

12 0,580 0,727 20 0,445 0,568 28 0,375 0,483

13 0,555 0,698 21 0,435 0,555 29 0,368 0,474

14 0,534 0,675 22 0,424 0,543 30 0,362 0,466

Страницы: 1 2


Профессиональная мотивация
Перейдем теперь к рассмотрению вопроса о профессиональной мотивации и ее влиянии на успеваемость учащихся. В настоящее время уже не вызывает сомне­ния отсутствие дилеммы в вопросе, чем обусловлена успеваемость учащихся - природными способностями или развитием учебной мотивации. Известно, что здесь существует сложная система взаимосвязей ...

Концепции проблемного обучения, психологические условия организации проблемного обучения
Проблемное обучение представляет собой совокупность взаимосвязанных методов и средств, которые направлены на самостоятельное добывание знаний путем решения учебных проблем, формирование творческого мышления и познавательных интересов учащихся. Проблемное обучение раскрывается через постановку (учителем, учителем с учеником или самим уче ...

Психология как наука. Психика и мозг. Психические явления
Психология обладает особыми качествами по сравнению с другими научными дисциплинами. Как системой знаний ею владеют немногие. Однако с областью явлений, изучаемых этой наукой, сталкиваются все: она представлена в виде наших собственных ощущений, образов, представлений, явлений памяти, мышления, речи, воли, воображения, интересов, потреб ...